Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 177.214
1.
Mol Biol Rep ; 51(1): 567, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38656394

BACKGROUND: Metabolic plasticity gives cancer cells the ability to shift between signaling pathways to facilitate their growth and survival. This study investigates the role of glucose deprivation in the presence and absence of beta-hydroxybutyrate (BHB) in growth, death, oxidative stress and the stemness features of lung cancer cells. METHODS AND RESULTS: A549 cells were exposed to various glucose conditions, both with and without beta-hydroxybutyrate (BHB), to evaluate their effects on apoptosis, mitochondrial membrane potential, reactive oxygen species (ROS) levels using flow cytometry, and the expression of CD133, CD44, SOX-9, and ß-Catenin through Quantitative PCR. The activity of superoxide dismutase, glutathione peroxidase, and malondialdehyde was assessed using colorimetric assays. Treatment with therapeutic doses of BHB triggered apoptosis in A549 cells, particularly in cells adapted to glucose deprivation. The elevated ROS levels, combined with reduced levels of SOD and GPx, indicate that oxidative stress contributes to the cell arrest induced by BHB. Notably, BHB treatment under glucose-restricted conditions notably decreased CD133 expression, suggesting a potential inhibition of cell survival through the downregulation of CD133 levels. Additionally, the simultaneous decrease in mitochondrial membrane potential and increase in ROS levels indicate the potential for creating oxidative stress conditions to impede tumor cell growth in such environmental settings. CONCLUSION: The induced cell death, oxidative stress and mitochondria impairment beside attenuated levels of cancer stem cell markers following BHB administration emphasize on the distinctive role of metabolic plasticity of cancer cells and propose possible therapeutic approaches to control cancer cell growth through metabolic fuels.


3-Hydroxybutyric Acid , Apoptosis , Glucose , Lung Neoplasms , Membrane Potential, Mitochondrial , Mitochondria , Oxidative Stress , Reactive Oxygen Species , Humans , Oxidative Stress/drug effects , Glucose/metabolism , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , A549 Cells , Mitochondria/metabolism , Mitochondria/drug effects , 3-Hydroxybutyric Acid/pharmacology , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Apoptosis/drug effects , Cell Survival/drug effects , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Superoxide Dismutase/metabolism , AC133 Antigen/metabolism , AC133 Antigen/genetics
2.
J Hazard Mater ; 470: 134148, 2024 May 15.
Article En | MEDLINE | ID: mdl-38565012

There is increasing global concern regarding the pervasive issue of plastic pollution. We investigated the response of Populus × euramericana cv. '74/76' to nanoplastic toxicity via phenotypic, microanatomical, physiological, transcriptomic, and metabolomic approaches. Polystyrene nanoplastics (PS-NPs) were distributed throughout the test plants after the application of PS-NPs. Nanoplastics principally accumulated in the roots; minimal fractions were translocated to the leaves. In leaves, however, PS-NPs easily penetrated membranes and became concentrated in chloroplasts, causing thylakoid disintegration and chlorophyll degradation. Finally, oxidant damage from the influx of PS-NPs led to diminished photosynthesis, stunted growth, and etiolation and/or wilting. By integrating dual-omics data, we found that plants could counteract mild PS-NP-induced oxidative stress through the antioxidant enzyme system without initiating secondary metabolic defense mechanisms. In contrast, severe PS-NP treatments promoted a shift in metabolic pattern from primary metabolism to secondary metabolic defense mechanisms, an effect that was particularly pronounced during the upregulation of flavonoid biosynthesis. Our findings provide a useful framework from which to further clarify the roles of key biochemical pathways in plant responses to nanoplastic toxicity. Our work also supports the development of effective strategies to mitigate the environmental risks of nanoplastics by biologically immobilizing them in contaminated lands.


Populus , Populus/drug effects , Populus/metabolism , Populus/growth & development , Populus/genetics , Polystyrenes/toxicity , Plant Leaves/drug effects , Plant Leaves/metabolism , Oxidative Stress/drug effects , Photosynthesis/drug effects , Chlorophyll/metabolism , Metabolomics , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/growth & development , Nanoparticles/toxicity , Multiomics
3.
J Hazard Mater ; 470: 134129, 2024 May 15.
Article En | MEDLINE | ID: mdl-38565019

Butylparaben, a common endocrine disruptor in the environment, is known to be toxic to the reproductive system, heart, and intestines, but its nephrotoxicity has rarely been reported. In order to study the nephrotoxicity and mechanism of butylparaben, we examined the acute and chronic effects on human embryonic kidney cells (HEK293T) and zebrafish. Additionally, we assessed the potential remedial effects of salidroside against butylparaben-induced nephrotoxicity. Our in vitro findings demonstrated oxidative stress and cytotoxicity to HEK293T cells caused by butylparaben. In the zebrafish model, the concentration of butylparaben exposure ranged from 0.5 to 15 µM. An assortment of experimental techniques was employed, including the assessment of kidney tissue morphology using Hematoxylin-Eosin staining, kidney function analysis via fluorescent dextran injection, and gene expression studies related to kidney injury, development, and function. Additionally, butylparaben caused lipid peroxidation in the kidney, thereby damaging glomeruli and renal tubules, which resulted from the downregulation of the PI3K-AKT signaling pathway. Furthermore, salidroside ameliorated butylparaben-induced nephrotoxicity through the PI3K-AKT signaling pathway. This study reveals the seldom-reported kidney toxicity of butylparaben and the protective effect of salidroside against toxicological reactions related to nephrotoxicity. It offers valuable insights into the risks to kidney health posed by environmental toxins.


Kidney , Parabens , Phenols , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Zebrafish , Animals , Parabens/toxicity , Phosphatidylinositol 3-Kinases/metabolism , Humans , Proto-Oncogene Proteins c-akt/metabolism , Kidney/drug effects , Kidney/pathology , HEK293 Cells , Signal Transduction/drug effects , Phenols/toxicity , Glucosides/pharmacology , Down-Regulation/drug effects , Oxidative Stress/drug effects , Endocrine Disruptors/toxicity , Lipid Peroxidation/drug effects , Kidney Diseases/chemically induced , Kidney Diseases/pathology , Kidney Diseases/metabolism
4.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 55(2): 249-255, 2024 Mar 20.
Article Zh | MEDLINE | ID: mdl-38645848

Intervertebral disc degeneration is widely recognized as one of the main causes of lower back pain. Intervertebral disc cells are the primary cellular components of the discs, responsible for synthesizing and secreting collagen and proteoglycans to maintain the structural and functional stability of the discs. Additionally, intervertebral disc cells are involved in maintaining the nutritional and metabolic balance, as well as exerting antioxidant and anti-inflammatory effects within the intervertebral discs. Consequently, intervertebral disc cells play a crucial role in the process of disc degeneration. When these cells are exposed to oxidative stress, mitochondria can be damaged, which may disrupt normal cellular function and accelerate degenerative changes. Mitochondria serve as the powerhouse of cells, being the primary energy-producing organelles that control a number of vital processes, such as cell death. On the other hand, mitochondrial dysfunction may be associated with various degenerative pathophysiological conditions. Moreover, mitochondria are the key site for oxidation-reduction reactions. Excessive oxidative stress and reactive oxygen species can negatively impact on mitochondrial function, potentially leading to mitochondrial damage and impaired functionality. These factors, in turn, triggers inflammatory responses, mitochondrial DNA damage, and cell apoptosis, playing a significant role in the pathological processes of intervertebral disc cell degeneration. This review is focused on exploring the impact of oxidative stress and reactive oxygen species on mitochondria and the crucial roles played by oxidative stress and reactive oxygen species in the pathological processes of intervertebral disc cells. In addition, we discussed current cutting-edge treatments and introduced the use of mitochondrial antioxidants and protectants as a potential method to slow down oxidative stress in the treatment of disc degeneration.


Intervertebral Disc Degeneration , Intervertebral Disc , Mitochondria , Oxidative Stress , Reactive Oxygen Species , Humans , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/etiology , Mitochondria/metabolism , Intervertebral Disc/metabolism , Intervertebral Disc/cytology , Reactive Oxygen Species/metabolism , Apoptosis , Animals , Antioxidants/pharmacology
5.
Sci Rep ; 14(1): 9506, 2024 04 25.
Article En | MEDLINE | ID: mdl-38664472

SEC61A1 encodes a central protein of the mammalian translocon and dysfunction results in severe disease. Recently, mutation R236C was identified in patients having autosomal dominant polycystic liver disease (ADPLD). The molecular phenotype of R236C was assessed in two cellular platforms. Cells were immortalized by retroviral transduction of an oncogene (UCi) or reprogrammed to induced pluripotent stem cells (iPSC) that were differentiated to cholangiocyte progenitor-like cells (CPLC). UCi and CPLC were subjected to analyses of molecular pathways that were associated with development of disease. UCi displayed markers of epithelial cells, while CPLCs expressed typical markers of both cholangiocytes and hepatocytes. Cells encoding R236C showed a stable, continuous proliferation in both platforms, however growth rates were reduced as compared to wildtype control. Autophagy, cAMP synthesis, and secretion of important marker proteins were reduced in R236C-expressing cells. In addition, R236C induced increased calcium leakiness from the ER to the cytoplasm. Upon oxidative stress, R236C led to a high induction of apoptosis and necrosis. Although the grade of aberrant cellular functions differed between the two platforms, the molecular phenotype of R236C was shared suggesting that the mutation, regardless of the cell type, has a dominant impact on disease-associated pathways.


Induced Pluripotent Stem Cells , SEC Translocation Channels , SEC Translocation Channels/metabolism , SEC Translocation Channels/genetics , Humans , Induced Pluripotent Stem Cells/metabolism , Cell Differentiation , Autophagy/genetics , Mutation , Hepatocytes/metabolism , Apoptosis/genetics , Oxidative Stress , Cell Proliferation
6.
BMC Complement Med Ther ; 24(1): 175, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664646

BACKGROUND: Excessive oxidative stress in the brain is an important pathological factor in neurological diseases. Acetoxypachydiol (APHD) is a lipophilic germacrane-type diterpene extracted as a major component from different species of brown algae within the genus Dictyota. There have been no previous reports on the pharmacological activity of APHD. The present research aims to explore the potential neuroprotective properties of APHD and its underlying mechanisms. METHODS: The possible mechanism of APHD was predicted using a combination of molecular docking and network pharmacological analysis. PC12 cells were induced by H2O2 and oxygen-glucose deprivation/reoxygenation (OGD/R), respectively. Western blot, flow cytometry, immunofluorescence staining, and qRT-PCR were used to investigate the antioxidant activity of APHD. The HO-1 inhibitor ZnPP and Nrf2 gene silencing were employed to confirm the influence of APHD on the signaling cascade involving HO-1, Nrf2, and Keap1 in vitro. RESULTS: APHD exhibited antioxidant activity in both PC12 cells subjected to H2O2 and OGD/R conditions by downregulating the release of LDH, the concentrations of MDA, and ROS, and upregulating SOD, GSH-Px, and GSH concentrations. APHD could potentially initiate the Keap1-Nrf2/HO-1 signaling cascade, according to the findings from network pharmacology evaluation and molecular docking. Furthermore, APHD was observed to increase Nrf2 and HO-1 expression at both mRNA and protein levels, while downregulating the protein concentrations of Keap1. Both Nrf2 silencing and treatment with ZnPP reversed the neuroprotective effects of APHD. CONCLUSIONS: APHD activated antioxidant enzymes and downregulated the levels of LDH, MDA, and ROS in two cell models. The neuroprotective effect is presumably reliant on upregulation of the Keap1-Nrf2/HO-1 pathway. Taken together, APHD from brown algae of the genus Dictyota shows potential as a candidate for novel neuroprotective agents.


Diterpenes , Heme Oxygenase (Decyclizing) , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Neuroprotective Agents , Oxidative Stress , Signal Transduction , Animals , NF-E2-Related Factor 2/metabolism , Neuroprotective Agents/pharmacology , Rats , PC12 Cells , Oxidative Stress/drug effects , Kelch-Like ECH-Associated Protein 1/metabolism , Signal Transduction/drug effects , Diterpenes/pharmacology , Molecular Docking Simulation , Antioxidants/pharmacology , Heme Oxygenase-1/metabolism
7.
J Ovarian Res ; 17(1): 87, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664755

Oxidative damage induced granulosa cells (GCs) apoptosis was considered as a significant cause of compromised follicle quality, antioxidants therapy has emerged as a potential method for improving endometriosis pregnancy outcomes. Here, we found that GCs from endometriosis patients show increased oxidative stress level. Methyl 3,4-dihydroxybenzoate (MDHB), a small molecule compound that is extracted from natural plants, reversed tert-butyl hydroperoxide (TBHP) induced GCs oxidative damage. Therefore, the aim of this study was to assess the protective effect of MDHB for GCs and its potential mechanisms. TUNEL staining and immunoblotting of cleaved caspase-3/7/9 showed MDHB attenuated TBHP induced GCs apoptosis. Mechanistically, MDHB treatment decreased cellular and mitochondria ROS production, improved the mitochondrial function by rescuing the mitochondrial membrane potential (MMP) and ATP production. Meanwhile, MDHB protein upregulated the expression of vital antioxidant transcriptional factor Nrf2 and antioxidant enzymes SOD1, NQO1 and GCLC to inhibited oxidative stress state, further beneficial to oocytes and embryos quality. Therefore, MDHB may represent a potential drug candidate in protecting granulosa cells in endometriosis, which can improve pregnancy outcomes for endometriosis-associated infertility.


Antioxidants , Endometriosis , Granulosa Cells , NF-E2-Related Factor 2 , Oxidative Stress , Granulosa Cells/metabolism , Granulosa Cells/drug effects , Female , Oxidative Stress/drug effects , Humans , NF-E2-Related Factor 2/metabolism , Antioxidants/pharmacology , Endometriosis/metabolism , Endometriosis/drug therapy , Endometriosis/pathology , Hydroxybenzoates/pharmacology , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , Membrane Potential, Mitochondrial/drug effects
8.
Biol Sex Differ ; 15(1): 38, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664845

BACKGROUND: Obstructive sleep apnea (OSA) affects 10-26% of adults in the United States with known sex differences in prevalence and severity. OSA is characterized by elevated inflammation, oxidative stress (OS), and cognitive dysfunction. However, there is a paucity of data regarding the role of sex in the OSA phenotype. Prior findings suggest women exhibit different OSA phenotypes than men, which could result in under-reported OSA prevalence in women. To examine the relationship between OSA and sex, we used chronic intermittent hypoxia (CIH) to model OSA in rats. We hypothesized that CIH would produce sex-dependent phenotypes of inflammation, OS, and cognitive dysfunction, and these sex differences would be dependent on mitochondrial oxidative stress (mtOS). METHODS: Adult male and female Sprague Dawley rats were exposed to CIH or normoxia for 14 days to examine the impact of sex on CIH-associated circulating inflammation (IL-1ß, IL-6, IL-10, TNF-α), circulating steroid hormones, circulating OS, and behavior (recollective and spatial memory; gross and fine motor function; anxiety-like behaviors; and compulsive behaviors). Rats were implanted with osmotic minipumps containing either a mitochondria-targeting antioxidant (MitoTEMPOL) or saline vehicle 1 week prior to CIH initiation to examine how inhibiting mtOS would affect the CIH phenotype. RESULTS: Sex-specific differences in CIH-induced inflammation, OS, motor function, and compulsive behavior were observed. In female rats, CIH increased inflammation (plasma IL-6 and IL-6/IL-10 ratio) and impaired fine motor function. Conversely, CIH elevated circulating OS and compulsivity in males. These sex-dependent effects of CIH were blocked by inhibiting mtOS. Interestingly, CIH impaired recollective memory in both sexes but these effects were not mediated by mtOS. No effects of CIH were observed on spatial memory, gross motor function, or anxiety-like behavior, regardless of sex. CONCLUSIONS: Our results indicate that the impact of CIH is dependent on sex, such as an inflammatory response and OS response in females and males, respectively, that are mediated by mtOS. Interestingly, there was no effect of sex or mtOS in CIH-induced impairment of recollective memory. These results indicate that mtOS is involved in the sex differences observed in CIH, but a different mechanism underlies CIH-induced memory impairments.


Sleep apnea is a common sleeping condition in adults with a wide range of symptoms that include inflammation, oxidative stress, memory problems, anxiety, and compulsivity. Men are diagnosed with sleep apnea more often than women. Although there is limited information on how sleep apnea affects men and women differently, previous studies suggest that women may exhibit different sleep apnea symptoms than men. To examine the impact of male and female sex on common sleep apnea symptoms, we exposed adult male and female rats to a model of sleep apnea called chronic intermittent hypoxia (CIH). We found that many effects of CIH were different in males and females. CIH females had increased inflammation and motor problems, whereas CIH males had increased oxidative stress and compulsivity. To investigate the reason for these CIH sex differences, we blocked mitochondrial oxidative stress. Blocking mitochondrial oxidative stress decreased CIH associated sex differences. However, blocking mitochondrial oxidative stress had no impact on CIH-induced memory impairment that was observed in male and female rats. Our findings support previous reports that suggest that women exhibit different sleep apnea symptoms than men. Further, we extend these findings by showing that mitochondrial oxidative stress is involved in these sex differences. Clinically, patients diagnosed with sleep apnea are typically treated with continuous positive airway pressure (CPAP) machines, which have high rates of non-compliance (15­40%). Therefore, understanding why sleep apnea is causing these symptoms will be important in developing therapeutics.


Hypoxia , Rats, Sprague-Dawley , Sex Characteristics , Sleep Apnea, Obstructive , Animals , Female , Male , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/metabolism , Hypoxia/metabolism , Oxidative Stress , Mitochondria/metabolism , Rats , Inflammation/metabolism , Cytokines/metabolism , Cytokines/blood , Behavior, Animal
9.
Discov Med ; 36(183): 699-713, 2024 Apr.
Article En | MEDLINE | ID: mdl-38665019

BACKGROUND: The usage of life-saving mechanical ventilation (MV) could cause ventilator-induced diaphragmatic dysfunction (VIDD), increasing both mortality and morbidity. Aminophylline (AP) has the potential to enhance the contractility of animal skeletal muscle fibers and improve the activity of human respiratory muscles, and the insulin-like growth factor-1 (IGF-1)- forkhead box protein O1 (FOXO1)-muscle RING finger-1 (MURF1) pathway plays a crucial role in skeletal muscle dysfunction. This study aimed to investigate the impact of AP on VIDD and to elucidate the role of the IGF-1-FOXO1-MURF1 pathway as an underlying mechanism. METHODS: Rat models of VIDD were established through MV treatment. IGF-1 lentiviral (LV) interference (LV-IGF-1-shRNA; controlled by lentiviral negative control LV-NC) was employed to inhibit IGF-1 expression and thereby block the IGF-1-FOXO1-MURF1 pathway. Protein and mRNA levels of IGF-1, FOXO1, and MURF1 were assessed using western blot and real-time reverse transcriptase-polymerase chain reaction (RT-qPCR), respectively. Diaphragm contractility and morphometry were examined through measurement of compound muscle action potentials (CMAPs) and hematoxylin and eosin (H&E) staining. Oxidative stress was evaluated by levels of hydrogen peroxide (H2O2), superoxide dismutase (SOD), antioxidant glutathione (GSH), and carbonylated protein. Mitochondrial stability was assessed by measuring the mitochondrial membrane potential (MMP), and mitochondrial fission and mitophagy were examined through protein levels of dynamin-related protein 1 (DRP1), mitofusin 2 protein (MFN2), phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1), and Parkin (western blot). Apoptosis was evaluated using the terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate (UTP) nick-end labeling (TUNEL) assay and levels of Bax, B-cell lymphoma 2 (BCL-2), and Caspase-3. Levels of Atrogin-1, neuronally expressed developmentally downregulated 4 (NEDD4), and muscle ubiquitin ligase of SCF complex in atrophy-1 (MUSA1) mRNA, as well as ubiquitinated protein, were utilized to determine protein degradation. Furthermore, the SUnSET (surface sensing of translation) method was employed to determine rates of protein synthesis. RESULTS: MV treatment upregulated IGF-1 while downregulated FOXO1 and MURF1 (p < 0.05). AP administration reversed IGF-1, FOXO1 and MURF1 (p < 0.05), which was suppressed again by IGF-1 inhibition (p < 0.05), demonstrating the blockage of the IGF-1-FOXO1-MURF1 pathway. MV treatment caused decreased CMAP and cross-sectional areas of diaphragm muscle fibers, and increased time course of CMAP (p < 0.05). Additionally, oxidative stress, cell apoptosis, and protein degradation were increased and mitochondrial stability was decreased by MV treatment (p < 0.05). Conversely, AP administration reversed all these changes induced by MV, but this reversal was disrupted by the blockage of the IGF-1-FOXO1-MURF1 pathway. CONCLUSIONS: In this study, MV treatment induced symptoms of VIDD in rats, which were all effectively reversed by AP regulating the IGF-1-FOXO1-MURF1 pathway, demonstrating the potential of AP in ameliorating VIDD.


Aminophylline , Diaphragm , Forkhead Box Protein O1 , Insulin-Like Growth Factor I , Muscle Proteins , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Animals , Insulin-Like Growth Factor I/metabolism , Muscle Proteins/metabolism , Muscle Proteins/genetics , Rats , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Male , Forkhead Box Protein O1/metabolism , Forkhead Box Protein O1/genetics , Diaphragm/drug effects , Diaphragm/pathology , Diaphragm/physiopathology , Diaphragm/metabolism , Aminophylline/pharmacology , Signal Transduction/drug effects , Rats, Sprague-Dawley , Respiration, Artificial/adverse effects , Oxidative Stress/drug effects
10.
Discov Med ; 36(183): 788-798, 2024 Apr.
Article En | MEDLINE | ID: mdl-38665027

BACKGROUND: High-salt diet (HSD) is a pivotal risk factor for osteoporosis (OP). Accumulating evidence has supported that tauroursodeoxycholic acid (TUDCA), a naturally produced hydrophilic bile acid, exerts positive effects on the treatment of OP. This study is committed to shedding light on the impacts of TUDCA on high salt-treated osteoblasts and probing into its underlying mechanisms of action. METHODS: Cell counting kit-8 (CCK-8) assay was used to determine the viability of osteoblasts. Alkaline phosphatase (ALP) staining and Alizarin red S (ARS) staining were used to measure osteoblast differentiation. Reverse transcription-quantitative PCR (RT-qPCR) and western blot were used to examine the expression of osteogenic markers. Western blot was also used to analyze the expression of superoxide dismutase-2 (SOD2), peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α), and NADPH oxidase 1 (NOX1). The production of reactive oxygen species (ROS) was evaluated via dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay. Following PGC-1α knockdown in TUDCA-pretreated osteoblasts exposed to NaCl, the aforementioned functional experiments were implemented again. RESULTS: MC3T3-E1 cell viability was not significantly impacted by increasing concentrations of TUDCA. However, in NaCl-exposed MC3T3-E1 cells, the viability loss, oxidative stress, and decline of differentiation were all dose-dependently obstructed by TUDCA treatment. Moreover, NaCl exposure reduced PGC-1α expression and increased NOX1 expression, which was then reversed by TUDCA. PGC-1α deletion partially abolished the effects of TUDCA on PGC-1α and NOX1, differentiation, and oxidative stress in NaCl-treated osteoblasts. CONCLUSIONS: TUDCA might protect against high salt-induced OP via modulation of NOX1 mediated by PGC-1α.


Cell Differentiation , NADPH Oxidase 1 , Osteoblasts , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Taurochenodeoxycholic Acid , Taurochenodeoxycholic Acid/pharmacology , Osteoblasts/drug effects , Osteoblasts/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Oxidative Stress/drug effects , Animals , Cell Differentiation/drug effects , Mice , NADPH Oxidase 1/metabolism , NADPH Oxidase 1/genetics , Reactive Oxygen Species/metabolism
11.
Discov Med ; 36(183): 799-815, 2024 Apr.
Article En | MEDLINE | ID: mdl-38665028

BACKGROUND: Calcium oxalate monohydrate (COM) forms the most common type of kidney stones observed in clinics, elevated levels of urinary oxalate being the principal risk factor for such an etiology. The objective of the present study was to evaluate the anti-nephrolithiatic effect of herbo-mineral formulation, Lithom. METHODS: The in vitro biochemical synthesis of COM crystals in the presence of Lithom was performed and observations were made by microscopy and Scanning Electron Microscope (SEM) based analysis for the detection of crystal size and morphology. The phytochemical composition of Lithom was evaluated by Ultra-High-Performance Liquid Chromatography (UHPLC). The in vivo model of Ethylene glycol-induced hyperoxaluria in Sprague-Dawley rats was used for the evaluation of Lithom. The animals were randomly allocated to 5 different groups namely Normal control, Disease control (ethylene glycol (EG), 0.75%, 28 days), Allopurinol (50 mg/kg, q.d.), Lithom (43 mg/kg, b.i.d.), and Lithom (129 mg/kg, b.i.d.). Analysis of crystalluria, oxalate, and citrate levels, oxidative stress parameters (malondialdehyde (MDA), catalase, myeloperoxidase (MPO)), and histopathology by hematoxylin and eosin (H&E) and Von Kossa staining was performed for evaluation of Lithom. RESULTS: The presence of Lithom during COM crystals synthesis significantly reduced the average crystal area, feret's diameter, and area-perimeter ratio, in a dose-dependent manner. SEM analysis revealed that COM crystals synthesized in the presence of 100 and 300 µg/mL of Lithom exhibited a veritable morphological transition from irregular polygons with sharp edges to smoothened smaller cuboid polygons. UHPLC analysis of Lithom revealed the presence of Trigonelline, Bergenin, Xanthosine, Adenosine, Bohoervinone B, Vanillic acid, and Ellagic acid as key phytoconstituents. In EG-induced SD rats, the Lithom-treated group showed a decrease in elevated urinary oxalate levels, oxidative stress, and renal inflammation. Von Kossa staining of kidney tissue also exhibited a marked reduction in crystal depositions in Lithom-treated groups. CONCLUSION: Taken together, Lithom could be a potential clinical-therapeutic alternative for management of nephrolithiasis.


Calcium Oxalate , Disease Models, Animal , Hyperoxaluria , Nephrolithiasis , Oxidative Stress , Rats, Sprague-Dawley , Animals , Calcium Oxalate/metabolism , Calcium Oxalate/chemistry , Hyperoxaluria/chemically induced , Hyperoxaluria/metabolism , Oxidative Stress/drug effects , Rats , Nephrolithiasis/chemically induced , Nephrolithiasis/metabolism , Nephrolithiasis/pathology , Male , Crystallization , Ethylene Glycol/toxicity , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
12.
Discov Med ; 36(183): 816-826, 2024 Apr.
Article En | MEDLINE | ID: mdl-38665029

BACKGROUND: Pneumonia is a prevalent respiratory ailment involving complex physiological and pathological mechanisms. The tripartite motif containing 27 (TRIM27) plays a crucial role in regulating inflammation mechanisms. Therefore, the purpose of this study is to further explore the therapeutic potential of TRIM27 in pneumonia, based on its regulatory mechanisms in inflammation and autophagy. METHODS: This study established a mouse pneumonia animal model through lipopolysaccharide (LPS) administration, designating it as the LPS model group. Subsequently, adenovirus-mediated TRIM27 overexpression was implemented in the animals of the LPS model group, creating the TRIM27 treatment group. After a 7-day treatment period, lung tissues from the mice were collected. Various techniques, including immunohistochemistry, quantitative reverse transcription PCR (RT-qPCR), western blot, enzyme-linked immunosorbent assay (ELISA), and electron microscopy were utilized to analyze the impact of TRIM27 overexpression on inflammatory factors, oxidative stress, autophagy, and inflammatory processes in pulmonary tissues. Finally, an in vitro LPS cell model was established, and the effects of TRIM27 overexpression and autophagy inhibition on inflammatory cytokines and autophagosomes in LPS-induced inflammatory cells were examined through RT-qPCR and immunofluorescence techniques. RESULTS: The research findings demonstrate a significant reduction in the elevated levels of interleukin-6 (IL-6), IL-1ß, and Tumor necrosis factor-alpha (TNF-α) induced by LPS with TRIM27 overexpression (p < 0.01). Conversely, the autophagy inhibitor 3-Methyladenine (3-MA) diminished the effects induced by TRIM27 overexpression. Moreover, TRIM27 overexpression enhanced the expression of Microtubule-associated protein 1A/1B light chain 3 (LC3) II/I and Beclin-1 proteins in mice subjected to LPS stimulation (p < 0.01), while reducing the expression of the p62 protein (p < 0.01). The addition of 3-MA, however, decreased Beclin-1 expression and inhibited autophagy (p < 0.01). Additionally, TRIM27 overexpression decreased the expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3), cleaved caspase-1, IL-1ß, and Gasdermin D N-terminal fragment (GSDMD-N) proteins in LPS-stimulated mice (p < 0.05). TRIM27 overexpression also decreased the levels of malondialdehyde (MDA), Activating Transcription Factor 6 (ATF6), and C/EBP-homologous protein (CHOP), while increasing the levels of superoxide dismutase (SOD) and glutathione (GSH) in mice exposed to LPS (p < 0.01). CONCLUSION: The induction of TRIM27 overexpression emerges as a potential and effective pneumonia treatment. The underlying mechanism may involve inducing protective autophagy, thereby reducing oxidative stress and cell pyroptosis.


Adenine/analogs & derivatives , Autophagy , DNA-Binding Proteins , Disease Models, Animal , Lipopolysaccharides , Pneumonia , Tripartite Motif Proteins , Ubiquitin-Protein Ligases , Animals , Autophagy/drug effects , Autophagy/genetics , Mice , Pneumonia/pathology , Pneumonia/metabolism , Lipopolysaccharides/toxicity , Oxidative Stress/drug effects , Lung/pathology , Lung/metabolism , Adenine/pharmacology , Male , Mice, Inbred C57BL , Beclin-1/metabolism , Beclin-1/genetics
13.
BMC Vet Res ; 20(1): 143, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38622626

Polystyrene nanoplastic (PS-NPs) and Engine oil (EO) pose multiple ecotoxic effects with increasing threat to fish ecosystems. The current study investigated the toxicity of 15 days exposure to PS-NPs and / or EO to explore their combined synergistic effects on Nile tilapia, Oreochromis niloticus (O. niloticus). Hematobiochemical parameters, proinflammatory cytokines, and oxidative stress biomarkers as well as histological alterations were evaluated. The experimental design contained 120 acclimated Nile tilapia distributed into four groups, control, PS-NPs (5 mg/L), EO (1%) and their combination (PS-NPs + EO). After 15-days of exposure, blood and tissue samples were collected from all fish experimental groups. Results indicated that Nile tilapia exposed to PS-NPs and / or EO revealed a significant decrease in almost all the measured hematological parameters in comparison to the control, whereas WBCs and lymphocyte counts were significantly increased in the combined group only. Results clarified that the combined PS-NPs + EO group showed the maximum decrease in RBCs, Hb, MCH and MCHC, and showed the maximum significant rise in interleukin-1ß (IL-1ß), and interleukin-6 (IL-6) in comparison to all other exposed groups. Meanwhile, total antioxidant capacity (TAC) showed a significant (p < 0.05) decline only in the combination group, whereas reduced glutathione (GSH) showed a significant decline in all exposed groups in comparison to the control. Both malondialdehyde (MDA) and aspartate aminotransferase (AST) showed a significant elevation only in the combination group. Uric acid showed the maximum elevation in the combination group than all other groups, whereas creatinine showed significant elevation in the EO and combination group when compared to the control. Furthermore, the present experiment proved that exposure to these toxicants either individually or in combination is accompanied by pronounced histomorpholgical damage characterized by severe necrosis and hemorrhage of the vital organs of Nile tilapia, additionally extensively inflammatory conditions with leucocytes infiltration. We concluded that combination exposure to both PS-NPs and EO caused severe anemia, extreme inflammatory response, oxidative stress, and lipid peroxidation effects, thus they can synergize with each other to intensify toxicity in fish.


Cichlids , Microplastics , Animals , Microplastics/metabolism , Microplastics/pharmacology , Polystyrenes/toxicity , Polystyrenes/metabolism , Ecosystem , Liver/metabolism , Antioxidants/metabolism , Oxidative Stress , Interleukin-6/metabolism
14.
J Neuroinflammation ; 21(1): 94, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622640

BACKGROUND: Traumatic brain injury (TBI) causes significant blood-brain barrier (BBB) breakdown, resulting in the extravasation of blood proteins into the brain. The impact of blood proteins, especially fibrinogen, on inflammation and neurodegeneration post-TBI is not fully understood, highlighting a critical gap in our comprehension of TBI pathology and its connection to innate immune activation. METHODS: We combined vascular casting with 3D imaging of solvent-cleared organs (uDISCO) to study the spatial distribution of the blood coagulation protein fibrinogen in large, intact brain volumes and assessed the temporal regulation of the fibrin(ogen) deposition by immunohistochemistry in a murine model of TBI. Fibrin(ogen) deposition and innate immune cell markers were co-localized by immunohistochemistry in mouse and human brains after TBI. We assessed the role of fibrinogen in TBI using unbiased transcriptomics, flow cytometry and immunohistochemistry for innate immune and neuronal markers in Fggγ390-396A knock-in mice, which express a mutant fibrinogen that retains normal clotting function, but lacks the γ390-396 binding motif to CD11b/CD18 integrin receptor. RESULTS: We show that cerebral fibrinogen deposits were associated with activated innate immune cells in both human and murine TBI. Genetic elimination of fibrin-CD11b interaction reduced peripheral monocyte recruitment and the activation of inflammatory and reactive oxygen species (ROS) gene pathways in microglia and macrophages after TBI. Blockade of the fibrin-CD11b interaction was also protective from oxidative stress damage and cortical loss after TBI. CONCLUSIONS: These data suggest that fibrinogen is a regulator of innate immune activation and neurodegeneration in TBI. Abrogating post-injury neuroinflammation by selective blockade of fibrin's inflammatory functions may have implications for long-term neurologic recovery following brain trauma.


Brain Injuries, Traumatic , Fibrin , Humans , Mice , Animals , Fibrin/genetics , Fibrin/metabolism , Brain Injuries, Traumatic/pathology , Fibrinogen/metabolism , Immunity, Innate , Oxidative Stress , Mice, Inbred C57BL
15.
Cell Commun Signal ; 22(1): 231, 2024 Apr 18.
Article En | MEDLINE | ID: mdl-38637880

BACKGROUND: Neurodegenerative diseases are increasingly recognized for their association with oxidative stress, which leads to progressive dysfunction and loss of neurons, manifesting in cognitive and motor impairments. This study aimed to elucidate the neuroprotective role of peroxiredoxin II (Prx II) in counteracting oxidative stress-induced mitochondrial damage, a key pathological feature of neurodegeneration. METHODS: We investigated the impact of Prx II deficiency on endoplasmic reticulum stress and mitochondrial dysfunction using HT22 cell models with knocked down and overexpressed Prx II. We observed alcohol-treated HT22 cells using transmission electron microscopy and monitored changes in the length of mitochondria-associated endoplasmic reticulum membranes and their contact with endoplasmic reticulum mitochondria contact sites (EMCSs). Additionally, RNA sequencing and bioinformatic analysis were conducted to identify the role of Prx II in regulating mitochondrial transport and the formation of EMCSs. RESULTS: Our results indicated that Prx II preserves mitochondrial integrity by facilitating the formation of EMCSs, which are essential for maintaining mitochondrial Ca2+ homeostasis and preventing mitochondria-dependent apoptosis. Further, we identified a novel regulatory axis involving Prx II, the transcription factor ATF3, and miR-181b-5p, which collectively modulate the expression of Armcx3, a protein implicated in mitochondrial transport. Our findings underscore the significance of Prx II in protecting neuronal cells from alcohol-induced oxidative damage and suggest that modulating the Prx II-ATF3-miR-181b-5p pathway may offer a promising therapeutic strategy against neurodegenerative diseases. CONCLUSIONS: This study not only expands our understanding of the cytoprotective mechanisms of Prx II but also offers necessary data for developing targeted interventions to bolster mitochondrial resilience in neurodegenerative conditions.


MicroRNAs , Mitochondrial Diseases , Neurodegenerative Diseases , Humans , Peroxiredoxins/genetics , Reactive Oxygen Species/metabolism , Oxidative Stress , Apoptosis , Endoplasmic Reticulum Stress , MicroRNAs/metabolism
16.
Cell Rep ; 43(4): 114067, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38583150

Mitochondrial dysfunction critically contributes to many major human diseases. The impact of specific gut microbial metabolites on mitochondrial functions of animals and the underlying mechanisms remain to be uncovered. Here, we report a profound role of bacterial peptidoglycan muropeptides in promoting mitochondrial functions in multiple mammalian models. Muropeptide addition to human intestinal epithelial cells (IECs) leads to increased oxidative respiration and ATP production and decreased oxidative stress. Strikingly, muropeptide treatment recovers mitochondrial structure and functions and inhibits several pathological phenotypes of fibroblast cells derived from patients with mitochondrial disease. In mice, muropeptides accumulate in mitochondria of IECs and promote small intestinal homeostasis and nutrient absorption by modulating energy metabolism. Muropeptides directly bind to ATP synthase, stabilize the complex, and promote its enzymatic activity in vitro, supporting the hypothesis that muropeptides promote mitochondria homeostasis at least in part by acting as ATP synthase agonists. This study reveals a potential treatment for human mitochondrial diseases.


Mitochondria , Oxidative Phosphorylation , Animals , Humans , Mitochondria/metabolism , Mitochondria/drug effects , Oxidative Phosphorylation/drug effects , Mice , Oxidative Stress/drug effects , Peptidoglycan/metabolism , Mice, Inbred C57BL , Adenosine Triphosphate/metabolism
17.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 42(2): 163-171, 2024 Apr 01.
Article En, Zh | MEDLINE | ID: mdl-38597076

OBJECTIVES: To investigate the mechanism of circadian clock protein Bmal1 (Bmal1) on renal injury with chronic periodontitis, we established an experimental rat periodontitis model. METHODS: Twelve male Wistar rats were randomly divided into control and periodontitis groups (n=6, each group). The first maxillary molars on both sides of the upper jaw of rats with periodontitis were ligated by using orthodontic ligature wires, whereas the control group received no intervention measures. After 8 weeks, clinical periodontal parameters, including probing depth, bleeding index, and tooth mobility, were evaluated in both groups. Micro-CT scanning and three-dimensional image reconstruction were performed on the maxillary bones of the rats for the assessment of alveolar bone resorption. Histopatholo-gical observations of periodontal and renal tissues were conducted using hematoxylin-eosin (HE) and periodic acid-Schiff (PAS) staining. Renal function indicators, such as creatinine, albumin, and blood urea nitrogen levels, and oxidative stress markers, including superoxide dismutase, glutathione, and malondialdehyde levels, were measured using biochemical assay kits. MitoSOX red staining was used to detect reactive oxygen species (ROS) content in the kidneys. The gene and protein expression levels of Bmal1, nuclear factor erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) in rat renal tissues were assessed using real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemical staining. RESULTS: Micro-CT and HE staining results showed significant bone resorption and attachment loss in the maxillary first molar region of the periodontitis group. Histological examination through HE and PAS staining revealed substantial histopathological damage to the renal tissues of the rats in the periodontitis group. The findings of the assessment of renal function and oxidative stress markers indicated that the periodontitis group exhibited abnormal levels of oxidative stress, whereas the renal function levels showed abnormalities without statistical significance. MitoSOX Red staining results showed that the content of ROS in the renal tissue of the periodontitis group was significantly higher than that of the control group, and RT-qPCR and immunohistochemistry results showed that the expression levels of Bmal1, Nrf2, and HO-1 in the renal tissues of the rats in the periodontitis group showed a decreasing trend. CONCLUSIONS: Circadian clock protein Bmal1 plays an important role in the oxidative damage process involved in the renal of rats with periodontitis.


Bone Resorption , Circadian Clocks , Organophosphorus Compounds , Periodontitis , Phenanthridines , Animals , Male , Rats , Bone Resorption/metabolism , Kidney/metabolism , Kidney/pathology , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Periodontitis/metabolism , Rats, Wistar , Reactive Oxygen Species/metabolism
18.
Aging (Albany NY) ; 16(7): 5829-5855, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38613792

Aging is characterized by declining health that results in decreased cellular resilience and neuromuscular function. The relationship between lifespan and health, and the influence of genetic background on that relationship, has important implications in the development of pharmacological anti-aging interventions. Here we assessed swimming performance as well as survival under thermal and oxidative stress across a nematode genetic diversity test panel to evaluate health effects for three compounds previously studied in the Caenorhabditis Intervention Testing Program and thought to promote longevity in different ways - NP1 (nitrophenyl piperazine-containing compound 1), propyl gallate, and resveratrol. Overall, we find the relationships among median lifespan, oxidative stress resistance, thermotolerance, and mobility vigor to be complex. We show that oxidative stress resistance and thermotolerance vary with compound intervention, genetic background, and age. The effects of tested compounds on swimming locomotion, in contrast, are largely species-specific. In this study, thermotolerance, but not oxidative stress or swimming ability, correlates with lifespan. Notably, some compounds exert strong impact on some health measures without an equally strong impact on lifespan. Our results demonstrate the importance of assessing health and lifespan across genetic backgrounds in the effort to identify reproducible anti-aging interventions, with data underscoring how personalized treatments might be required to optimize health benefits.


Caenorhabditis elegans , Longevity , Oxidative Stress , Animals , Longevity/drug effects , Longevity/genetics , Oxidative Stress/drug effects , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/genetics , Caenorhabditis elegans/physiology , Resveratrol/pharmacology , Aging/drug effects , Aging/genetics , Genetic Background , Swimming , Piperazines/pharmacology , Stilbenes/pharmacology
19.
PLoS Negl Trop Dis ; 18(4): e0012103, 2024 Apr.
Article En | MEDLINE | ID: mdl-38620045

BACKGROUND: The severe late stage Human African Trypanosomiasis (HAT) caused by Trypanosoma brucei rhodesiense (T.b.r) is characterized by damage to the blood brain barrier, severe brain inflammation, oxidative stress and organ damage. Melarsoprol (MelB) is currently the only treatment available for this disease. MelB use is limited by its lethal neurotoxicity due to post-treatment reactive encephalopathy. This study sought to assess the potential of Ginkgo biloba (GB), a potent anti-inflammatory and antioxidant, to protect the integrity of the blood brain barrier and ameliorate detrimental inflammatory and oxidative events due to T.b.r in mice treated with MelB. METHODOLOGY: Group one constituted the control; group two was infected with T.b.r; group three was infected with T.b.r and treated with 2.2 mg/kg melarsoprol for 10 days; group four was infected with T.b.r and administered with GB 80 mg/kg for 30 days; group five was given GB 80mg/kg for two weeks before infection with T.b.r, and continued thereafter and group six was infected with T.b.r, administered with GB and treated with MelB. RESULTS: Co-administration of MelB and GB improved the survival rate of infected mice. When administered separately, MelB and GB protected the integrity of the blood brain barrier and improved neurological function in infected mice. Furthermore, the administration of MelB and GB prevented T.b.r-induced microcytic hypochromic anaemia and thrombocytopenia, as well as T.b.r-driven downregulation of total WBCs. Glutathione analysis showed that co-administration of MelB and GB prevented T.b.r-induced oxidative stress in the brain, spleen, heart and lungs. Notably, GB averted peroxidation and oxidant damage by ameliorating T.b.r and MelB-driven elevation of malondialdehyde (MDA) in the brain, kidney and liver. In fact, the co-administered group for the liver, registered the lowest MDA levels for infected mice. T.b.r-driven elevation of serum TNF-α, IFN-γ, uric acid and urea was abrogated by MelB and GB. Co-administration of MelB and GB was most effective in stabilizing TNFα levels. GB attenuated T.b.r and MelB-driven up-regulation of nitrite. CONCLUSION: Utilization of GB as an adjuvant therapy may ameliorate detrimental effects caused by T.b.r infection and MelB toxicity during late stage HAT.


Ginkgo biloba , Melarsoprol , Oxidative Stress , Plant Extracts , Trypanosoma brucei rhodesiense , Trypanosomiasis, African , Animals , Mice , Trypanosomiasis, African/drug therapy , Trypanosomiasis, African/parasitology , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Ginkgo biloba/chemistry , Trypanosoma brucei rhodesiense/drug effects , Melarsoprol/pharmacology , Male , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Disease Models, Animal , Brain/drug effects , Brain/parasitology , Brain/metabolism , Brain/pathology , Antioxidants/pharmacology , Inflammation/drug therapy
20.
J Mol Neurosci ; 74(2): 44, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38630337

Plants are a valuable source of information for pharmacological research and new drug discovery. The present study aimed to evaluate the neuroprotective potential of the leaves of the medicinal plant Sterculia setigera. In vitro, the effect of Sterculia setigera leaves dry hydroethanolic extract (SSE) was tested on cultured cerebellar granule neurons (CGN) survival when exposed to hydrogen peroxide (H2O2) or 6-hydroxydopamine (6-OHDA), using the viability probe fluorescein diacetate (FDA), a lactate dehydrogenase (LDH) activity assay, an immunocytochemical staining against Gap 43, and the quantification of the expression of genes involved in apoptosis, necrosis, or oxidative stress. In vivo, the effect of intraperitoneal (ip) injection of SSE was assessed on the developing brain of 8-day-old Wistar rats exposed to ethanol neurotoxicity by measuring caspase-3 activity on cerebellum homogenates, the expression of some genes in tissue extracts, the thickness of cerebellar cortical layers and motor coordination. In vitro, SSE protected CGN against H2O2 and 6-OHDA-induced cell death at a dose of 10 µg/mL, inhibited the expression of genes Casp3 and Bad, and upregulated the expression of Cat and Gpx7. In vivo, SSE significantly blocked the deleterious effect of ethanol by reducing the activity of caspase-3, inhibiting the expression of Bax and Tp53, preventing the reduction of the thickness of the internal granule cell layer of the cerebellar cortex, and restoring motor functions. Sterculia setigera exerts neuroactive functions as claimed by traditional medicine and should be a good candidate for the development of a neuroprotective treatment against neurodegenerative diseases.


Cell Death , Ethanol , Neurons , Neuroprotective Agents , Plant Extracts , Plant Leaves , Sterculia , Animals , Rats , Caspase 3/metabolism , Ethanol/administration & dosage , Ethanol/chemistry , Ethanol/toxicity , Hydrogen Peroxide/toxicity , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Oxidopamine/toxicity , Rats, Wistar , Sterculia/chemistry , Plant Leaves/chemistry , Plants, Medicinal/chemistry , Neurons/cytology , Neurons/drug effects , Neurons/enzymology , Neurons/pathology , Lactate Dehydrogenases/metabolism , GAP-43 Protein/analysis , Apoptosis/genetics , Oxidative Stress/genetics , Cerebellum/cytology , Cerebellum/drug effects , Cerebellum/pathology , Cerebellum/physiology , Male , Female , Cells, Cultured , Cell Death/drug effects , Gene Expression Regulation/drug effects , Phytochemicals/administration & dosage , Phytochemicals/analysis , Phytochemicals/chemistry , Phytochemicals/pharmacology , Plant Extracts/administration & dosage , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antioxidants/analysis , Antioxidants/chemistry , Antioxidants/pharmacology , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , 60705 , Secondary Metabolism
...